Two New Xanthone Glycosides from Securidaca inappendiculata

Xue Dong YANG**, Li Zhen XU*, Shi Lin YANG

Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100094

Abstract: Two new xanthone glycosides, securixanside B and C, were isolated from the stems of *Securidaca inappendiculata*. Their structures were determined as $3-O-\beta-D$ -glucopyranosyl-1,7-dihydroxy-2-methoxyxanthone and $6-O-\beta-D$ -glucopyranosyl-1-hydroxy-4,7-dimethoxyxanthone by spectroscopic methods.

Keywords: Securidaca inappendiculata, xanthone glycoside, securixanside B and C.

Securidaca inappendiculata Hassk. is liana which distributed in the south of China. It is used in Guangxi folk medicine for the treatment of rheumatalgia, enterogastritis and inflammatory disease¹. We report here the structure elucidation of two new xanthone glycosides, 3-O- β -D-gluco-pyranosyl-1,7-dihydroxy-2-methoxyxanthone (1) and 6-O- β -D-glucopyranosyl-1-hydroxy-4,7-dimethoxyxanthone (2), isolated from the stems of *S. inappendiculata*.

Compound **1** was obtained as yellow amorphous solid, mp 256°C. The FAB mass spectrum displayed a quasi-molecular ion peak at m/z 437 [M+H]⁺ and a prominent fragment ion peak at m/z 275 [M+H-162]⁺ due to the loss of sugar moiety. In combination with the NMR spectral data (**Table 1**), the molecular formula of **1** was determined to be C₂₀H₂₀O₁₁. The ¹H, ¹³C NMR spectra showed signals for a glucose unit, which was confirmed by TLC after acid hydrolysis of **1**⁴. The UV absorption bands at 234, 256, 294, 374 nm and IR (KBr) absorption bands at 3440, 1660, 1600 and 1575 cm⁻¹ suggested the presence of xanthone skeleton. The signal at δ 12.73 ppm in

^{*}E-mail:xulizh@hotmail.com, **Post-doctor researcher of Tsinghua University.

Xue Dong YANG et al.

¹H NMR spectrum of **1** (DMSO-d₆) indicated that a hydroxyl was chelated to a carbonyl group². The ¹H NMR spectrum also exhibited one aromatic proton at δ 6.85 ppm (s), and three coupled aromatic protons at δ 7.33 (dd, J = 9.0, 3.0Hz), δ 7.50 (d, J = 9.0 Hz) and δ 7.45 (d, J = 3.0Hz), indicating that A ring was mono-substituted and B ring was tri-substituted. The signals of the anomeric proton of the glucose appeared at δ 5.14 (d, J = 7.1 Hz) in the ¹H NMR spectrum, indicating that the sugar moiety should be β -orientated. Comparison of the ¹H, ¹³C NMR and EIMS spectral data of **1** with the known compound, 1, 3, 7-trihydroxy-2-methoxyxanthone and β -glucose was connected at C-3 position. Therefore, **1** was identified as 3-O- β -D-glucopyranosyl-1,7-dihydroxy-2-methoxyxanthone, named securixanside B.

No.	¹³ C	$^{1}\mathrm{H}$	No.	¹³ C	1 H
1	153.3		8b	103.5	
2	131.5		C=O	180.5	
3	153.5		Glc-1'	100.1	5.14 d (7.1)
4	93.7	6.85 s	2'	73.1	
4a	152.2		3'	76.5	
4b	149.1		4 ′	69.6	
5	118.7	7.50 d (9.0)	5'	77.1	
6	124.7	7.33 dd (9.0, 3.0)	6'	60.6	
7	153.8		MeO-2	60.2	3.87 s
8	107.7	7.45 d (3.0)	HO-1		12.73 s
8a	119.8		HO-7		9.85 s

Table 1 13 C NMR (125 MHz) and 1 H NMR (500 MHz) data of **1** (DMSO-d₆, TMS, δ , ppm)

Coupling constants (Hz) in parentheses.

Compound **2** was obtained as yellow amorphous solid, mp 276°C. Its HR FABMS showed a quasi-molecular ion peak at m/z 451.1241 [M+H]⁺, calculated 451.1240 for C₂₁H₂₂O₁₁. The FABMS displayed a prominent fragment ion peak at m/z 289 [M+H-162]⁺ due to the loss of hexose moiety. The ¹H, ¹³C NMR spectra showed signals for a glucose unit, which was confirmed by TLC after acid hydrolysis of **2**⁴.

The UV spectrum of **2** exhibited characteristic absorption bands of a xanthone $(\lambda_{max}^{MeOH} 226, 266, 310, 378 \text{ nm})$. The presence of a free hydroxyl group at C-6 or C-3 were excluded based on the lack of any change in the UV spectrum with NaOAc⁵. The ¹H NMR spectrum displayed signals of two aromatic methoxyl (δ 3.84, 3.89), an AB system of two protons ortho-coupled (δ 7.51 and 7.03; J = 9.0Hz) and two singlets (δ

7.51, 7.31), indicating that one aromatic ring was 2,3-ortho-disubstituted and the other was 1,4-para-disubstituted. The signal at δ 12.87ppm in ¹H NMR spectrum of **2** indicated that a hydroxyl was chelated to a carbonyl group⁶. The presence of 6-O- β -D-glucopyranosyl-7-methoxyl and 1-hydroxy-4-methoxyl aromatic ring moiety in **2** was supported by comparison of the ¹³C and ¹H NMR spectrum of **2** with known compounds, 6-O- β -D-glucopyranosyl-1-hydroxy-7-methoxyxanthone (**3**)⁷ and 1,7-di-hydroxy-4-methoxyxanthone (**4**)⁸. The shifts of corresponding carbons in the ¹³C NMR spectrum of **2**, **3** and **4** are essentially the same (**Table 2**). The signals of the anomeric proton of the glucose appeared at δ 5.05 (d, J = 6.0 Hz) in the ¹H NMR spectrum, indicating that the sugar moiety should be β -orientated.

From above chemical and spectral evidences, the compound was identified as $6-O-\beta-D$ -glucopyranosyl-1-hydroxy-4,7-dimethoxyxanthone, named securixanside C.

No.	2		3 ^{a)}		4 ^{b)}	
	δC	δН	δC	δН	δC	δН
1	154.0		160.8		153.3	
2	108.1	7.03 d (9.0)	109.9	6.80 dd (8.3, 1.0)	108.0	6.71 d (8.9)
3	121.4	7.51 d (9.0)	136.6	7.69 t (8.3)	120.1	7.45 d (9)
4	142.1		107.4	7.06 dd (8.3, 1.0)	139.9	
4a	149.7		155.8			
4b	149.4		146.9		154.3	
5	103.1	7.31 s	103.1	7.36 s	119.7	7.59 d (9)
6	152.2		153.8		125.8	7.36 dd (9, 2.8)
7	146.8		146.9		145.2	
8	104.7	7.51 s	104.6	7.54 s	107.8	7.44 d (2.6)
8a	122.8		113.3		120.5	
8b	105.6					
C=O	180.9		180.4		181.7	
Glc-1	99.7	5.05 d (6.0)	99.5	5.24 d (7.3)		
2 '	73.1		73.0			
3'	76.7		76.6			
4 ′	69.6		69.4			
5'	77.2		77.1			
6'	60.7		60.6			
HO-1		12.87 s		12.79 s		11.99 s
HO-7						10.19 brs
MeO-4	56.8	3.84 s				3.88 s
MeO-7	56.0	3.89 s	55.9	3.91	56.8	

 Table 2
 ¹³C NMR and ¹H NMR data of 2 (125/500 MHz), 3 (100/400 MHz) and 4 (75/300 MHz) (DMSO-d₆, TMS, δ, ppm)

Coupling constants (Hz) in parentheses.

a) Data from reference 7.

b) Data from reference 8.

Acknowledgment

The authors express their gratitude to Prof. Pu-Zhu Cong for his helpful suggestions on MS elucidation; Prof. Guang-Zhong Tu (Institute of Beijing Microchemistry) for obtaining the 500 MHz NMR data; Prof. Li-Jun Li (Institute of Materia Medica) for recording the EIMS; Mr. Sheng-Ming Wu (Academy of Military Medical Sciences) for FABMS measurements.

Xue Dong YANG et al.

References

- 1. Jiangsu Institute of Botany, *Xinhua bencao gangyao (A Encyclopedia of Chinese Medical Herbs*, Chinese), Shanghai Science and Technology Press, Shanghai, **1988** Vol. 1, 292.
- 2. X. N. Luo, L. J. Ji, H. F. Sun, Chinese J. Magn. Reson, 1996, 13 (6), 557.
- 3. T. R. Pinheiro, V. C. Filho, A. R. S. Santes, J. B. Calixto, F. D. Monache, M. G. Pizzolatti, & R. A. Yunes, *Phytochemistry*, **1998**, *48*, 725.
- 4. P. P. Zhao, B. M. Li, L. Y. He, Yaoxue Xubao (Acta Pharmaceutica Sinica, Chinese), 1987, 22(1), 70.
- 5. J. B. Harborne, *Phytochemical Methods*, 3rd edition, Chapman & Hall, London, **1998**, 88.
- 6. W. W. Philip, P. G. Sarath, M. Uvais, S. Sultanbawa & K. Rymantas, Org. Magn. Reson. 1977, 9, 631.
- H. Tosa, M. Linuma, K. I. Murakami, T. Ito & V. S. Chelladurai, *Phytochemistry*, **1997**, 45 (1), 133.
- 8. A. Kijjoa, M. Jose, T. G. Gonzalez, *Phytochemistry*, **1998**, 49 (7), 2159.

Received 17 September, 2001